References

References

  1. Robinson and Spudich, J. , personal Communication

    Eichinger L, Lee SS, Schleicher M. Dictyostelium as model system for studies of the actin cytoskeleton by molecular genetics. Microsc Res Techniq 47: 124-134 (1999)

  2. Gerisch G, Albrecht R, Heizer C, Hodgkinson S, Maniak M. Chemoattractant-controlled accumulation of coronin at the leading edge of Dictyostelium cells monitored using a green fluorescent protein-coronin fusion protein. Curr. Biol. 5, 1280-1285 (1995).

    Kreitmeier M, Gerisch G, Heizer C, Muller-Taubenberger A. A talin homologue of Dictyostelium rapidly assembles at the leading edge of cells in response to chemoattractant. J. Cell Biol. 129, 179-188 (1995).

    Gottwald U, Brokamp R, Karakesisoglou I, Schleicher M, Noegel A. A. Identification of a cyclases-asociated protein (CAP) homologue in Dictyostelium discoideum and characterization of its interaction with actin. Mol. Biol. Cell 7, 261-272 (1996).

    Moores, S. L., Sabry, J. H., and Spudich, J. A. Myosin dynamics in live Dictyostelium cells. Proc. Natl. Acad. Sci. USA 93, 443-446 (1996).

    Aizawa H, Fukui Y, and Yahara I. Live dynamics of Dictyostelium cofilin suggests a role in remodeling actin latticework into bundles. J.Cell Sci. 110, 2333-2344 (1997).

    Westphal M, Jungbluth A, Heidecker M, Muhlbauer B, Heizer C, Schwartz JM, Marriott, G, Gerisch G. Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein. Curr. Biol. 7, 176-183 (1997).

  3. Bezanilla M, Forsburg SL, Pollard TD The fission yeast myp2+ gene encodes a myosin II and is involved in cytokinesis. Mol Biol Cell 8: 923-923 (1997)

    De Lozanne A, Spudich JA. Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236: 1086-91 (1987)

  4. Mehta AD, Rief M, Spudich JA, Smith DA, Simmons RM. Single-molecule biomechanics with optical methods. Science 283:1689-95 (1999).

  5. Klein PS, Sun TJ, Saxe CL 3d, Kimmel AR, Johnson RL, Devreotes PN. A chemoattractant receptor controls development in Dictyostelium discoideum. Science 241: 1467-72 (1988)

    Sun TJ, Devreotes PN. Gene targeting of the aggregation stage cAMP receptor cAR1 in Dictyostelium. Genes Dev 5: 572-82 (1991).

    Kumagai, A., M. Pupillo, R. Gunderson, R. Miake-Lye, P.N. Devreotes and R.A. Firtel (1989). Regulation and function of G protein subunits in Dictyostelium. Cell 57: 265-275.

  6. Parent CA, Blacklock BJ, Froehlich WM, Murphy DB, Devreotes PN. G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95: 81-91 (1998)

    Xiao Z, Zhang N, Murphy DB, Devreotes PN. Dynamic distribution of chemoattractant receptors in living cells during chemotaxis and persistent stimulation. J Cell Biol 139: 365-74 (1997)

    Meili, R., C. Ellsworth, S. Lee, T.B.K. Reddy, H. Ma and R.A. Firtel (1999). Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J. 18:2092-2105.

  7. Zhou, K., Pandol, S., Bokoch, G.,and Traynor-Kaplan, A. E. (1998). Disruption of Dictyostelium PI3K genes reduces [32P]phosphatidylinositol 3,4 bisphosphate and [32P]phosphatidylinositol trisphosphate levels, alters F-actin distribution and impairs pinocytosis. J. Cell Sci. 111, 283-294.

    Zhou, K. M., Takegawa, K., Emr, S. D., and Firtel, R. A. (1995). A phosphatidylinositol (PI) kinase gene family in Dictyostelium discoideum: Biological roles of putative mammalian p110 and yeast Vps34p PI 3-kinase homologs during growth and development. Mol. Cell. Biol. 15, 5645-5656.

    Meili, R., C. Ellsworth, S. Lee, T.B.K. Reddy, H. Ma and R.A. Firtel (1999). Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium.EMBO J. 18:2092-2105.

  8. Wang N, Shaulsky G, Escalante R, Loomis WF.  A two-component histidine kinase gene that functions in Dictyostelium development. EMBO J 15: 3890-8 (1996)

  9. Kawata T, Shevchenko A, Fukuzawa M, Jermyn KA, Totty NF, Zhukovskaya NV, Sterling AE, Mann M, Williams JG. SH2 signaling in a lower eukaryote: a STAT protein that regulates stalk cell differentiation in Dictyostelium.  Cell 89: 909-16 (1997)

    Harwood AJ, Plyte SE, Woodgett J, Strutt H, Kay RR. Glycogen synthase kinase 3 regulates cell fate in Dictyostelium.  Cell 80: 139-48 (1995)

    Araki, T., M. Gamper, A. Early, M. Fukuzawa, T. Abe, E. Kim, R.A. Firtel and J.G. Williams (1998). Developmentally and spatially regulated activation of a Dictyostelium STAT protein by a serpentine receptor. EMBO J. 17:4018-4028

  10. Milne JL, Wu L, Caterina MJ, Devreotes PN. Seven helix cAMP receptors stimulate Ca2+ entry in the absence of functional G proteins in Dictyostelium J Biol Chem 270: 5926-31 (1995)

    Maeda M, Firtel RA. Activation of the mitogen-activated protein kinase ERK2 by the chemoattractant folic acid in Dictyostelium. J Biol Chem 272: 23690-5 (1997)

    Schnitzler GR, Briscoe C, Brown JM, Firtel RA. Serpentine cAMP receptors may act through a G protein-independent pathway to induce postaggregative development in Dictyostelium. Cell 81: 737-45 (1995)

    Ginsburg, G. T., and Kimmel, A. R. (1997). Autonomous and nonautonomous regulation of axis formation by antagonistic signaling via 7-span cAMP receptors and GSK3 in Dictyostelium. Genes Devel. 11, 2112-2123.

    Plyte, S. E., O'Donovan, E., Woodgett, J. R., and Harwood, A. J. (1999). Glycogen synthase kinase-3 (GSK-3) is regulated during Dictyostelium development via the serpentine receptor cAR3. Development 126, 325-333.

    Leung Kim, Jingchun Liu, and Alan R. Kimmel; 1999 The Novel Tyrosine Kinase ZAK1 Activates GSK3 to Direct Cell Fate Specification. Cell 99, 399-408.

  11. Chung CY, Reddy TB, Zhou K, Firtel RA.  A novel, putative MEK kinase controls developmental timing and spatial patterning in Dictyostelium and is regulated by ubiquitin-mediated protein degradation.  Genes Dev 12: 3564-78 (1998)

  12. Kay RR, Jermyn KA.  A possible morphogen controlling differentiation in Dictyostelium. Nature 303: 242-4 (1983)

    Kubohara,Y. Effects of differentiation-inducing factors of Dictyostelium discoideum on human leukemia K562 cells: DIF-3 is the most potent anti-leukemic agent. Eur J Pharmacol 381: 57-62 (1999)

  13. Ginsburg, G. T., and Kimmel, A. R. (1997). Autonomous and nonautonomous regulation of axis formation by antagonistic signaling via 7-span cAMP receptors and GSK3 in Dictyostelium. Genes Devel. 11, 2112-2123.

    Plyte, S. E., O'Donovan, E., Woodgett, J. R., and Harwood, A. J. (1999).  Glycogen synthase kinase-3 (GSK-3) is regulated during Dictyostelium development via the serpentine receptor cAR3. Development 126, 325-333.

    Leung Kim, Jingchun Liu, and Alan R. Kimmel (1999) The Novel Tyrosine Kinase ZAK1 Activates GSK3 to Direct Cell Fate Specification. Cell 99, 399-408.


Home| Contact dictyBase| SOPs| Site Map  Supported by NIH (NIGMS and NHGRI)